Saturday, April 6, 2013

SLS for Return to the Moon by the 50th Anniversary of Apollo 11, page 4: further on lightweighting the SLS core.

                                             Copyright 2013 Robert Clark

 NASA has decided to revert to the original Al 2219 aluminum alloy that was first used on the shuttle external tank for the SLS core:


SLS takes on new buckling standards, drops Super Light alloy.
February 18, 2013 by Martin Payne 
http://www.nasaspaceflight.com/2013/02/sls-new-buckling-standards-drops-super-light-alloy/

 This is due to the greater brittleness of the lighter aluminum-lithium alloys used on the later super lightweight ET tank (SLWT). And because the later alloys were not available in the greater thickness needed for optimal lightweight performance. 
 However, NASA itself estimated the Al-li alloys could save 25% off the weight of a propellant tank over the Al 2219 alloy:

RELEASE : 09-096
NASA Uses Twin Processes to Develop New Tank Dome Technology
http://www.nasa.gov/centers/langley/news/releases/2009/09-096.htm

 Still NASA estimated in regards to the SLS tank, reverting back to the Al 2219 alloy would only cost 3,000 kg in lost payload, much smaller than 25%. Apparently, the reduced thickness of the plates available for the aluminum-lithium alloys used on the SLWT results in reduced weight efficiency. 
 However, a new aluminum-lithium alloy Al-Li 2050 has similar strength at lightweight to the SLWT alloys and is available in thicker plate sizes:

Shell Buckling Knockdown Factor (SBKF) Project Update.
http://www.nasa.gov/offices/nesc/home/Feature_ShellBuckling_Test.html

 Then we could recover the ca. 25% saving over using the Al 2219 alloy. This now is a significant increase in payload, beyond just 3,000 kg. The original ET tank using Al 2219 alloy weighed 35,000 kg. The new SLS tank is scaled up 33%, so under the same Al 2219 alloy would weigh in the range of 46,000 kg. Then the new Al-Li alloy saving 25% off this would be a saving of 11,500 kg. 
 NASA made an assessment of cost benefit analysis and decided on the older Al 2219 alloy. But this is Apollo era, 1960's, technology. This is going backwards not forwards in our technological development. 
 Further weight saving can be achieved by using composites for the intertank. NASA with Boeing is investigating large cryogenic composite tanks. This is still a research project. However the intertank is an unpressurized structure. Structures like this have been made of composites for decades. 
 To estimate the weight that can be saved, note the intertank in the al-li SLWT weighed 5,500 kg:

Single Stage To Orbit Mass Budgets Derived From Propellant Density and Specific Impulse.
John C. Whitehead
32nd AIAA/ASME/SAE/ASEE Joint Propulsion ConferenceLake Buena Vista, FL July 1-3, 1996
http://www.osti.gov/bridge/servlets/purl/379977-2LwFyZ/webviewable/379977.pdf

 Then the intertank of the SLS of 33% larger size may be estimated to weigh 7,300 kg. A new composite material known as an isotruss saves significantly on weight:









 It weighs less than 1/7th that of aluminum at the same strength. This would reduce the intertank mass to less than 1,000 kg. This would subtract off an additional 6,000 kg from the tank mass to bring it down to 28,500 kg. This is nearly 18,000 kg in total off from the original SLS tank weight, which could go to extra payload.
 As I mentioned in the blog post SLS for Return to the Moon by the 50th Anniversary of Apollo 11, page 3: lightweighting the SLS core, internal NASA estimates put the actual payload of the SLS as significantly above the 70 mT mark often cited by NASA. Then an additional 18,000 kg added to this payload capability would put the SLS payload to LEO at ca. 100 mT. This is important because it would mean the SLS would have the capability to do manned lunar lander missions, not just lunar flybys.
 NASA administrator Charles Bolden has said NASA, meaning the administrators, has no plans on a Moon mission, being more focused on a mission to an asteroid. However, the public in general, space advocates, industry, and even NASA's own ranks have shown no interest in the asteroid mission:


Back to the Moon? Not any time soon, says Bolden.
By Jeff Foust on 2013 April 5 at 1:05 pm ET
A week from Monday marks the third anniversary of President Obama’s speech at the Kennedy Space Center where he formally announced the goal of a human mission to an asteroid by 2025. While that is an official goal of NASA’s human space exploration program, there remains some opposition or, at the very least, lack of acceptance of the goal by many people, including some with NASA, as a report on NASA’s strategic direction concluded last December.
At a joint meeting of the Space Studies Board and the Aeronautics and Space Engineering Board in Washington on Thursday, the head of that study, Al Carnesale of UCLA, reiterated those concerns. “Since it was announced, there was less enthusiasm for it among the community broadly,” he said of the asteroid mission goal. “The more we learn about it, the more we hear about it, people seem less enthusiastic about it.”
Carnesale suggested that, in his opinion, it might be better to shelve the asteroid mission goal in favor of a human return to the Moon. “There’s a great deal of enthusiasm, almost everywhere, for the Moon,” he said. “I think there might be, if no one has to swallow their pride and swallow their words, and you can change the asteroid mission a little bit… it might be possible to move towards something that might be more of a consensus.”
http://www.spacepolitics.com/2013/04/05/back-to-the-moon-not-any-time-soon-says-bolden/

 The SLS even by its first mission in 2017 can do manned lunar landing missions by incorporating well known and relatively low cost weight saving methods to its core and upper stages.
 This would go a long way towards garnering support both among the public and those in  industry to know that a return to the Moon is in the offing and in the very near term.



  Bob Clark


Update, Sept. 28, 2013:

 Finally, NASA has acknowledged that the Block 1, first version of the SLS to launch in 2017 will have a 90+ mT payload capacity not the 70 mT always stated by NASA:

SLS Dual Use Upper Stage (DUUS).
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130013953_2013013757.pdf

 This is important since it means we will have the capability to do manned lunar landing missions by the 2017 first launch of the SLS:

SLS for Return to the Moon by the 50th Anniversary of Apollo 11, page 5: A 90+ metric ton first launch of the SLS.
http://exoscientist.blogspot.com/2013/09/sls-for-return-to-moon-by-50th.html

1 comment:

Robert Clark said...

Dr. Steven Pietrobon mentioned that SpaceX to save on costs does not mill out large amounts metal out a thick plate for the Falcon 9 tanks, but uses a thin plate and uses friction-stir welding to attach stringers. This would allow you to use the same Al-Li alloy now used on the shuttle ET tanks, getting that same 25% weight saving.
Another possibility is that "isotruss" structure likely would still work to save weight even if made out of metal. Then the stringers could be in this form to further save on weight.
In regards to a composite intertank, it is notable that the Delta IV core stage already uses a composite intertank, called the centerbody. Since Boeing, which has the contract for the SLS core, also makes the Delta IV core, this is a technology the Boeing engineers are well-familiar with.

Bob Clark

SpaceX routine orbital passenger flights imminent.

 Copyright 2024 Robert Clark  An approximate $100 per kilo cost has been taken as a cost of space access that will open up the space frontie...