Wednesday, October 25, 2023

Towards return of Europe to dominance of the launch market, Page 2: ESA needs an independent oversight agency.

 Copyright 2023 Robert Clark


 Recent news reports are the Ariane 6 will not be able to compete with the SpaceX Falcon 9, requiring an increase in subsidies to ArianeSpace resulting in a total of €350 million($380 million) per year:


Oops—It looks like the Ariane 6 rocket may not offer Europe any launch savings
Europe is subsidizing the launch of Internet satellites for Jeff Bezos.
ERIC BERGER - 10/12/2023, 11:26 AM
https://arstechnica.com/space/2023/10/oops-it-looks-like-the-ariane-6-rocket-may-not-offer-europe-any-launch-savings/


 At a launch cadence of 6 launches per year this is a subsidy of nearly €60 million per launch. This means European tax payers will be paying over a billion euros for the contracted 18 launches on the Ariane 6 of the commercial venture the Kuiper satellite system of Jeff Bezos. In effect, European tax payers will be paying a billion euro subsidy to Jeff Bezos, the 2nd richest man in the world.


European Space Agency mulls extra Ariane 6 cash.

BY CALEB LARSON

OCTOBER 20, 2023 7:00 AM CET

Strategic autonomy? Ariane 6 is in danger of turning into a fiasco for the ESA and France’s aerospace industry. Since being commissioned a decade ago, Ariane 6 has been surpassed by Elon Musk's SpaceX which has slashed the cost of launches with its partially reusable rocket technology. Because its predecessor Ariane 5, a super reliable commercial launcher, has already been retired, the European Commission is even having to look to SpaceX to get its satellites into orbit. That's exactly the kind of outsourcing Paris wants to avoid in its focus on building strategic autonomy.

https://www.politico.eu/article/european-space-agency-mulls-extra-ariane-6-rocket-cash-ask/


 The fiasco has come to pass as Europe was forced to ask SpaceX to launch its vaunted Galileo GPS system on the Falcon 9, when it was intended to be launched on the Ariane 6:


Europe Reluctantly Chooses SpaceX to Launch Its GPS Satellites.
Elon Musk's SpaceX is set to undertake its first launch of European satellites equipped with classified technology, specifically for the Galileo system.
https://www.politico.eu/article/european-space-agency-mulls-extra-ariane-6-rocket-cash-ask/


 Reports are the Vega-C is in a similar bad position with respect to the SpaceX Falcon 9 using rideshare for small payloads:


The Accidental Monopoly
How SpaceX became (just about) the only game in town
Jeff Foust
October 13, 2023
SpaceX came with these Transporter missions, which have been really disrupting,” said Marino Fragnito, senior vice president of the Vega business unit at Arianespace. They have been a boon for smallsat developers, he acknowledged, offering low-cost access to space. “But at the same time, they have created a big problem in terms of the business case for all of the other players.”
He accused SpaceX of, in effect, predatory pricing, willing to lose money on Transporter missions to drive out competition. He noted that past Vega smallsat rideshare missions sold payloads at $25,000 per kilogram, whereas SpaceX has sold Transporter launches for one-fifth that price. “It’s crazy.”
https://spacenews.com/the-accidental-monopoly/


 This has been warned about for several years now:


Europe is starting to freak out about the launch dominance of SpaceX
The Falcon 9 has come to dominate commercial satellite launches.
ERIC BERGER - 3/22/2021, 11:24 AM
However, there now appears to be increasing concern in Europe that the Ariane 6 and Vega-C rockets will not be competitive in the launch market of the near future. This is important, because while member states of the European Space Agency pay for development of the rockets, after reaching operational status, these launch programs are expected to become self-sufficient by attracting commercial satellite launches to help pay the bills.
Economic ministers in France and Italy have now concluded that the launch market has changed dramatically since 2014, when the Ariane 6 and Vega-C rockets were first designed. According to a report in Le Figaro newspaper, the ministers believe the ability of these new European rockets to compete for commercial launch contracts has significantly deteriorated since then.
https://arstechnica.com/science/2021/03/european-leaders-say-an-immediate-response-needed-to-the-rise-of-spacex/


 European tax payers have the right to ask where the great expense of the Ariane 6 launcher is deriving from.


 No one in European space community is willing to ask or answer the question, “How much just to add a second Vulcain to the Ariane 5/6 core?”


 Then can someone, anyone in the European space community at least ask the question, “Does a single P120 solid rocket used for the Ariane 6 SRB’s and the Vega-C first stage really cost €20 million?”
 “So that the two 
SRB’s on the Ariane 62 cost €40 million, and the four on the Ariane 64 cost €80 million?”

“So that out of the €115 recommended cost of the Ariane 64, €80 is just for the 4 solid side boosters?”


 It is important to recognize that the high price of the Ariane 6 and the Vega-C is coming solely from the large solid rockets they use.

 

 It is common to think of solid side boosters as only adding a small amount to the price of a launcher, like with the small solids used on the Delta IV or Atlas V. But it is quite important to realize these are for small side boosters that might be only ca. 1/10th the mass of the core. But for the Ariane 6 the large side boosters are the size of the core in mass, and for the Vega the large solid booster is the core.


 Then the concept of the low cost solid booster is no longer valid; indeed these solid rockets boosters are the cause of the high cost of these launchers. To give an illustrative example, imagine the size of the side boosters on the Delta IV and Atlas V were 10 times larger than they are. I think you can see that would mean their cost would be radically higher than they are now.


 So how bad is the pricing of the P120 solids used for the Ariane 6 solids and the Vega-C first stage? Three separate and independent arguments suggest the P120 solid booster costs ca. €20 million each.


 ArianeSpace suggested a price of €75 million for the Ariane 62 with two SRB's and €115 million for the Ariane 64 with four SRB's. The €40 million increase in price for the two additional SRB's on the Ariane 64 suggests that is the price for two, or €20 million each.


 A second argument for the high cost of the P120 solid rocket comes from comparing it to the cost of the GEM 63 SRB used on American launchers. The GEM 63 is estimated to cost in the range of $5 million to $7 million each. But the P120 is three times the size of the GEM 63. So based on that we expect the price to be in the range $15 million to $21 million each.


 A third argument comes from looking at the price of the Vega-C. It's in the range of €35 million. Elon Musk has estimated the first stage of the Falcon 9 is 60% of the price of the rocket, with the upper stage, fairing, and range costs making up the rest of the cost. 


 The Vega-C is a 4-stager instead of the 2-stage Falcon 9, but the salient point still remains: the much larger size of the first stage than the other stages means it makes up the largest proportion of the cost. 

 Using the 60% Elon Musk estimate for the cost of the first stage would give a €21 million cost for the P120 first stage of the Vega-C.


 So there is abundant evidence the large side boosters used on the ArianeSpace rockets are quite expensive. But is there an alternative? Yes! The price of a single Vulcain is only €10 million. So eliminate the Ariane 6 SRB's entirely and use two to three Vulcains on the core instead. Not using the SRB's results in a greatly reduced price.


 For a two Vulcain Ariane 6 sans SRB's, use a smaller upper stage of ca. 10 ton size so it would be loftable by the two Vulcains. Then it could get ca. 12 tons to LEO.


 For a three Vulcain version without SRB's, it could get ca. 20 tons to LEO if you use a larger 40 ton to 50 ton upper stage made possible by the higher take-off thrust of the three Vulcains


 And for the replacement of the Vega-C? Use an approx. half-size Ariane 6 core and again a small ca. 10 ton upper stage so as to be loftable on a single Vulcain. This could get ca. 5 tons to LEO. This compared to the 2 tons LEO payload of the Vega-C. And it would be much cheaper than the Vega-C in not using the large SRB's.


 These LEO payload numbers can be easily confirmed by a rocket equation calculation.


 See discussion here:


Towards return of Europe to dominance of the launch market.

https://exoscientist.blogspot.com/2023/10/towards-return-of-europe-to-dominance.html


 In looking at how it is determined the path ESA will take in selecting it’s future launchers, what missing is an independent review authority tasked with reviewing the finances and architectures chosen.


 This is what is done with NASA. NASA has an Office of Inspector General independent of the NASA leadership tasked with reviewing the finances and architectures for the space programs NASA selects. It serves as an independent oversight agency:


NASA should consider commercial alternatives to SLS, inspector general says
"NASA’s aspirational goal to achieve a cost savings of 50 percent is highly unrealistic."
ERIC BERGER -  10/13/2023, 3:07 PM

https://arstechnica.com/space/2023/10/inspector-general-on-nasas-plans-to-reduce-sls-costs-highly-unrealistic/


 Note the report breaks down the costs of the different components of the Artemis program. This is a necessity for analysing the cost effectiveness of the different parts of the program.


 But such is lacking at ESA. For instance in that article “European Space Agency mulls extra Ariane 6 cash”, it is ESA that is effectively providing oversight of itself.


 With this arrangement ESA won’t question whether the architectures it chooses to begin with are the right ones or cost effective ones. Thus THE major question that must be asked remains unasked: is use of large solid side boosters cost effective? Would a cheaper architecture be obtained by using all-liquid propulsion?

 


  Robert Clark

Monday, October 9, 2023

Towards return of Europe to dominance of the launch market.

 Copyright 2023 Robert Clark


ESA delays Vega C return to flight to late 2024
Jeff Foust
October 2, 2023
https://spacenews.com/esa-delays-vega-c-return-to-flight-to-late-2024/

 Large solids like on the Vega and as used on the Ariane 5 and 6 are not price competitive. Note this is true for large solids. Small solid side boosters like used on the Atlas V and Delta IV might be only 1/8th the size of the core stage, with a concomitant small increase in cost. But when the solids are large size such as being as much or more than the size of the core such as on the Ariane 5 and 6 or actually being the core like on the Vega, the bulk of the high expense of the rocket comes from the solids.

See discussion here:

Friday, May 19, 2023
Who in European space will ask the impertinent question: How much would it cost to add a second Vulcain to the Ariane 5/6?
https://exoscientist.blogspot.com/2023/05/who-in-european-space-will-ask.html

 The cost of the two SRB’s on the Ariane 62 cost €40 million out of the €75 million cost. So the rest of the two-stage rocket is only €35 million. Then those two large SRB’s cost more than the entire rest of the rocket.

 As I argued there it would be cheaper just to put additional Vulcain(s) on the core and dispense with theSRB’s entirely. An additional Vulcain would add €10 million to the price to bring it to €45 million.

 Using all liquid propulsion also results in a cheaper rocket than the Vega. To see what such an all-liquid replacement for the Vega would look like see discussion here:

Saturday, November 29, 2014
A half-size Ariane for manned spaceflight.
https://exoscientist.blogspot.com/2014/11/a-half-size-ariane-for-manned.html

 By cutting down the core’s propellant size to a bit less than half and using a smaller ca. 10 ton upper stage, so it could be launched by a single Vulcain, you get an all-liquid two-stage rocket capable of about 5,000 kg to LEO. This compares to the 2,000 kg payload to LEO of the Vega.

 Quite important is the better cost per kilo for the all-liquid case. The Vega costs about €35 million for that 2,000 kg to LEO. But taking into account our all-liquid replacement to the Vega is half-size to the all-liquid Ariane 6, the cost conceivably could be in the range of only half the €45 million estimate of the all-liquid Ariane 6, so only ca. €22 million for a 5,000 kg to LEO launcher(!)

 And what about reusability? The Space Shuttle abundantly showed you don’t save on reusing solids. But SpaceX has abundantly showed you do save significantly on reusing a liquid-fueled booster. SpaceX reduces the price on the Falcon 9 from $60 million to $40 million, by reusing the booster only, so a price reduction of about one-third. If the same price reduction would apply for reusing the booster only for our half-sized Ariane, that would be a price of only €15 million for a 5,000 kg launcher(!)

 Europe could then dominate the market by offering rockets of differing sizes. For small payloads at 5,000 kg or less, a reused half-sized Ariane at €15 million. For larger payloads at ca. 10 tons, €30 million for the reused two-Vulcan Ariane. And for payloads in the Falcon 9 range of 20 tons, €36 million for the reused three-Vulcain Ariane 6.

  Bob Clark

 


A route to aircraft-like reusability for rocket engines.

  Copyright 2024 Robert Clark   A general fact about aircraft jet engines may offer a route to achieve aircraft-like reusability for rockets...