Monday, August 11, 2014

Dave Masten's DARPA Spaceplane.

Copyright 2014 Robert Clark

 Dave Masten's Masten Space Systems was recently announced as a winner of an award from DARPA to produce a reusable first-stage booster for a small orbital system:

Masten Space Systems selected by Defense Advanced Research Projects Agency for XS-1 Program.

 It is notable their version will be a winged booster. Previously Masten had worked on VTVL, i.e., vertical, propulsive landing vehicles. Masten describes the decision to go with a winged VTHL, i.e., horizontal landing, vehicle in a video interview on SpaceVidcast:



 At about the 41 minute mark Masten describes the fact that the need to return to the launch site to maintain low cost reusability after a high Mach flight, suggests high lift/drag ratio design and therefore wings.

 However, it would also work to use a lifting body. I discussed resurrecting the X-33 for this purpose in the post DARPA's Spaceplane: an X-33 version. It turns out the problem of getting conformally-shaped composite tanks, which doomed the X-33, becomes a non-issue if the vehicle is only to be used as a first stage booster. The reason is a first stage does not have to be as mass-ratio optimized so you can just use metal tanks. Still, despite that, in an up coming post I'll describe how it IS possible to get the lightweight tanks originally envisioned for the X-33 so in fact it is to possible to produce a SSTO VentureStar.

 In the interview, Masten also discusses a key difficulty is getting low cost engines that would be reusable that fit within DARPA's low cost requirements. He mentioned possibly using the engines XCOR is developing. I want to suggest the possibility also of using the Merlin engines as used on the SpaceX Falcon 1 first stage.

 The last quoted price for the entire Falcon 1 according to Ed Kyle's SpaceLaunchReport.com page on the Falcon 1 was $7.9 million from 2008. Based on that one would expect the cost of the engine alone would be less than that. Actually rather than developing a whole new first stage from scratch on this high risk project, as a preliminary development Masten might want to base a first version of his booster on the Falcon 1 first stage. By the specifications on Ed Kyle's page the Falcon 1 using the Merlin 1C only had a 470 kg payload to LEO, well less than the 1,400+ kg DARPA wants. Still this would lead to a faster and cheaper development to a reusable winged booster rather than creating everything from scratch. There is also the fact SpaceX is committed to launcher reusability and might even donate surplus Falcon 1's now in storage to the project. And Masten himself said during the SpaceVidcast interview he is spending much of his time working on the aerodynamics of such a winged booster rather than such questions as the propulsion.

  If SpaceX ever constructed the Falcon 1e, then Masten possibly might be able to use the Falcon 1e, which was to have double the size of the Falcon 1's first stage. According to Ed Kyle's page this was to have about a 1,000 kg LEO payload, closer to the DARPA requirements.

 Another possibility might be to use the Falcon 9 v1.1 upper stage. According to Elon Musk in discussing reusability, the first stage of the F9 is 3/4ths the cost and the upper stage 1/4th. So the cost of the upper stage would be in the range of $14 million. With 20 to 30 reuses this would be well within the $5 million per flight DARPA requirement for the program.

 A problem though is that as is usually the case with an upper stage the thrust is less than the full stage weight. We would have to cut down the tank size. According to Ed Kyle's page on the F9 v1.1 the propellant mass for the upper stage is estimated to be 93 metric tons (mT) and the dry mass 6 mT. Cutting the stage to be half size, take the propellant mass as 46 mT and the dry mass 3 mT.

 We need also to replace the Merlin Vacuum which can not operate at sea level with the Merlin 1D. By Ed Kyle's page the total thrust of the 9 engines on the F9v1.1 first stage is 600,000 kgf (kilogram-force). So one Merlin 1D would have sea level thrust of  67,000 kgf. Then using the 311 sec vacuum Isp of the Merlin 1D,  this could carry 12 mT to 4,280 m/s delta-v:

311*9.81ln(1 + 46/(3 + 12)) = 4,280 m/s.

 With approx. 1,200 m/s losses due to gravity and air drag this should be close to the Mach 10 DARPA requirement for the reusuable first stage, carrying a 12 mT total load for the upper stage and payload.


  Bob Clark



No comments:

Currently existing fire equipment could solve the California wildfires within days.

  Copyright 2025 Robert Clark  Several fire fighting equipment manufactures have mobile, high power water pumps:  Such pumps can send water ...