Copyright 2013 Robert Clark
The story has been told that when the Native Americans first saw the ships of the Europeans they could not grasp what they were seeing because it was so outside their experience. I've always been dubious of that story. But a recent study suggests something of this nature can happen:
Science confirms: Politics wrecks your ability to do math.
By Chris Mooney
Everybody knows that our political views can sometimes get in the way of thinking clearly. But perhaps we don’t realize how bad the problem actually is. According to a new psychology paper, our political passions can even undermine our very basic reasoning skills. More specifically, the study finds that people who are otherwise very good at math may totally flunk a problem that they would otherwise probably be able to solve, simply because giving the right answer goes against their political beliefs.http://grist.org/politics/science-confirms-politics-wrecks-your-ability-to-do-math/
So preconceived notions can affect your ability to reason effectively, even among the smartest among us. I'm reminded also of a brain puzzler stated on the "All in the Family" TV show during the '70s. Gloria presented to the family the following:
A father driving his young son were in an accident and the father was killed, while the son was injured but survived. When the child was brought to the hospital, the surgeon said, "I can't operate on this boy. He's my son."
That was a puzzler the rest of the family on the show couldn't solve then and neither could I when I first saw the episode back in the '70s. The answer of course is that the surgeon was the boy's mother.
With the advance of women in medicine now with most med school graduates being women that probably would not be such a great puzzle to solve now as then. But it indicates how your preconceived ideas can limit your ability to solve really simple problems.
Something like this is currently occurring at NASA. The Constellation program that would have returned us to the Moon has been cancelled due to high cost. However, many space advocates in the public and in Congress would prefer us to return to the Moon rather than the asteroid mission NASA is embarking on. No doubt because of these calls to return to the Moon, NASA released a study on a return to the Moon without Constellation:
Dual SLS launch campaign required for NASA’s Lunar return.
August 21, 2013 by Chris Bergin
http://www.nasaspaceflight.com/2013/08/dual-sls-required-nasas-lunar-landing-option/
I was surprised to read that the study assumed an Altair-sized lander at the ca. 45 mT range. But the Altair's size was a big reason driving Constellation's large size and therefore great expense. And in fact by using two SLS launches the mission size in this study turns out to be even larger than Constellation.
It was as if the study authors had never heard of the Apollo lander that was only one-third the size of Altair. The misperception that a lunar lander has to be as large as the Altair as well as being built from scratch rather than using existing propulsive stages and crew capsules drives the false conclusion that an additional $10 billion expense would be needed for such a lander, and therefore a lunar return is unaffordable.
A further misperception is what is the mass that could be transported to LEO by the SLS. The Block 0 version of the SLS was supposed to use three SSME's on the core and use the standard 4-segment SRB's used on the shuttle. This would have a 70 mT payload capacity to LEO.
However, NASA decided to bypass the Block 0 and go directly to the Block 1. This would stretch the core tank by a third and use a fourth SSME. It would also use a fifth-segment on the SRB's. So the size and thrust of the core would be increased by 33% and the size and thrust of the SRB by 25%.
Despite these increases in both size and thrust, NASA was still quoting 70 mT capacity for the Block 1 SLS. Logically the payload should have been increased but NASA continued to quote 70 mT. Finally, NASA did release a report that acknowledged the payload to LEO would be 90+ mT:
SLS Dual Use Upper Stage (DUUS).
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130013953_2013013757.pdf
This is important because at 90+ mT it is much easier to do a manned lunar landing mission using a single launch of the SLS, assuming you use a lander at the Apollo scale not the Altair scale. Indeed it would be possible at the first launch of the SLS in 2017.
Then it was these preconceived notions that prevented NASA from seeing that we can in fact return to the Moon as early as 2017, and not even at significantly greater expense than that already being spent on the SLS and Orion capsule.
Another mental block is operating in regards to how much such BEO missions should cost. NASA's commercial space program has been a great success in producing both launchers and spacecraft at as much as a 90%(!) savings over what NASA would normally have to pay for them. If any other federal agency had managed to reduce costs for normally multi-billion dollar programs to only a few hundred million dollars this would be hailed to the skies as a remarkable success in reducing costs to the American tax payer. Yet NASA was regarding it as if it were something they were only allowed to talk about in hushed tones.
Finally, NASA has released a report detailing the savings possible under the commercial space approach:
Daniel J. Rasky
Director, Emerging Commercial Space Office
NASA Ames Research Center
Founder & Director, Space Portal
NASA Research Park
Moffett Field, CA 9403
September 11, 2013
https://dl.dropboxusercontent.com/u/47645641/AIAA_2013.pptx
Imagine then these cost savings applied also to BEO missions to the Moon or asteroids. This would make these missions much more fiscally feasible. It was NASA not officially acknowledging such cost savings that made it so that they could not study possibilities for returning to the Moon in a low cost fashion.
For return to the Moon missions conducted by NASA, NASA may initially choose to use the, still expensive, SLS launcher. However, just as NASA has realized commercial space can make flights to the ISS much more cheaply than the shuttle, so also can commercial space make flights to the Moon much more cheaply.
Indeed, by going small, going commercial, and using preexisting propulsive stages and crew modules, crewed and cargo flights to the Moon can be made for comparable costs to what we are paying the Russians to send a crew of three to the ISS.
The conclusion you draw is that a Moon base can be sustained on the Moon for what we are currently paying to sustain the ISS.
Just free your mind, and the rest will follow.
Bob Clark